Con la ayuda de un cubo de hielo gigante en el Polo Sur, los investigadores detectaron neutrinos de la Vía Láctea por primera vez. Es muy difícil rastrear las “partículas fantasma”.
Antártida – En la Antártida, cerca de la Estación del Polo Sur Amundsen-Scott, hay un instrumento científico inusual en el hielo eterno: el Observatorio de Neutrinos Ice Cube. El sistema detector es justo lo que dice su nombre: un cubo de hielo. Su borde tiene 1 kilómetro de largo, por lo que contiene 1 kilómetro cúbico de hielo. En él, la ciencia está analizando algo muy especial: los neutrinos.
Estas partículas elementales eléctricamente neutras son extremadamente volátiles: apenas interactúan con la materia ordinaria. Pasan desapercibidos, razón por la cual se les llama “partículas fantasma”. Para poder detectar partículas volátiles, se necesita tanta materia que sea pura como sea posible y que pueda interactuar con los neutrinos. Uno de esos materiales es el agua, de la cual la Antártida tiene abundantes suministros en forma congelada.
Las “partículas fantasma” de la Vía Láctea atraviesan el hielo y emiten luz
Cuando un neutrino interactúa con una molécula de agua, se crean partículas cargadas eléctricamente que corren a través del hielo casi a la velocidad de la luz y emiten luz en el proceso: la radiación de Cherenkov. Esta radiación se captura en el detector gigante IceCube en la Antártida utilizando fotointensificadores 5160. Y eso no es todo: los investigadores también pueden determinar de qué dirección proviene la luz, una indicación de de qué dirección provienen los neutrinos.
Hasta ahora, IceCube solo ha podido detectar neutrinos de alta energía de galaxias distantes, pero se esperaba que los neutrinos de alta energía y los rayos gamma también se produzcan en nuestra Vía Láctea por la interacción de los rayos cósmicos con el gas y el polvo. Esto último ya ha sido probado, pero la búsqueda de neutrinos de la Vía Láctea hasta ahora no ha tenido éxito.
Sin embargo, mi equipo de investigación ahora ha logrado detectar neutrinos de alta energía de la Vía Láctea por primera vez. Hasta ahora, los astrónomos han buscado en vano, ya que los neutrinos también se producen en la atmósfera terrestre; este ruido se superpone a una señal de la Vía Láctea, que los investigadores han estado buscando durante mucho tiempo.
Investigadores descubren neutrinos de la Vía Láctea: un nuevo método de investigación
La detección es posible gracias a un método basado en el aprendizaje automático desarrollado principalmente en TU Dortmund. “Estos métodos mejorados significan que hemos podido utilizar unas diez veces más neutrinos que antes y con una mejor precisión direccional”, explica a la agencia de noticias Mirko Honnefeld, de TU Dortmund. dpa. “En general, nuestro análisis fue tres veces más sensible que los métodos de investigación anteriores”. Además del nuevo método, los investigadores filtraron los datos que provenían de la dirección del centro de la Vía Láctea. Los resultados del estudio fueron en el diario Ciencias publicado.
Los nuevos datos de IceCube proporcionan la primera imagen de la Vía Láctea como se vería si se pudieran ver los neutrinos. “Esta imagen confirma nuestro conocimiento previo sobre la Vía Láctea y los rayos cósmicos”, confirma a dpa el investigador de IceCube, Steve Sclafani. En el futuro, se recopilarán más datos y se mejorarán los métodos. “Esto nos brinda una imagen con mejor resolución que nunca”, dice Denise Caldwell. A continuación, los investigadores quieren saber exactamente dónde se originan los neutrinos. “Por supuesto, también esperamos descubrir estructuras previamente desconocidas y nunca antes vistas en nuestra Vía Láctea”, continúa Caldwell. (ficha/dpa)
“Analista exasperantemente humilde. Experto en tocino. Orgulloso especialista en alimentos. Lector certificado. Escritor ávido. Defensor de los zombis. Solucionador de problemas incurables”.
More Stories
Braunschweiger tiene un huésped molesto e incluso peligroso
El PIB aumenta repentinamente un 0,2%
Estos son los cinco mayores factores de riesgo